• 文献标题:   A successive ionic layer adsorption and reaction (SILAR) method to fabricate a layer-by-layer (LbL) MnO2-reduced graphene oxide assembly for supercapacitor application
  • 文献类型:   Article
  • 作  者:   JANA M, SAHA S, SAMANTA P, MURMU NC, KIM NH, KUILA T, LEE JH
  • 作者关键词:   layerbylayer assembly, supercapacitor, asymmetric device, energy density, power density
  • 出版物名称:   JOURNAL OF POWER SOURCES
  • ISSN:   0378-7753 EI 1873-2755
  • 通讯作者地址:   CSIR
  • 被引频次:   22
  • DOI:   10.1016/j.jpowsour.2016.11.096
  • 出版年:   2017

▎ 摘  要

A facile, cost effective and additive-free successive ionic layer adsorption and reaction (SILAR) technique is demonstrated to develop layer-by-layer (LbL) assembly of reduced graphene oxide (RGO) and MnO2 (MnO2-RGO(SILAR)) on a stainless steel current collector, for designing light-weight and small size super capacitor electrode. The transmission electron microscopy and field emission scanning electron microscopy images shows uniform distribution of RGO and MnO2 in the MnO2-RGO(SILAR). The LbL (MnO2-RGO(SILAR)) demonstrates improved physical and electrochemical properties over the hydrothermally prepared MnO2-RGO (MnO2-RGO(Hydro)). The electrochemical environment of MnO2-RGO(SILAR) is explained by constant phase element in the high frequency region, and a Warburg element in the low frequency region in the Z-View fitted Nyquist plot. The equivalent circuit of the MnO2-RGO(Hydro), displays the coexistence of EDL and constant phase element, indicating inhomogeneous distribution of MnO2 and RGO by the hydrothermal technique. An asymmetric supercapacitor device is designed with MnO2-RGO(SILAR) as positive electrode, and thermally reduced GO (TRGO) as negative electrode. The designed cell exhibits high energy density of similar to 88 Wh kg(-1), elevated power density of similar to 23,200 W kg(-1), and similar to 79% retention in capacitance after 10,000 charge-discharge cycles. (C) 2016 Elsevier B.V. All rights reserved.