▎ 摘 要
The electronic properties of graphene nanoribbons with boron/nitrogen codoping at different sites are investigated by performing first-principles calculations based on density functional theory. The calculated results show that the band structures of these doping configurations have distinctly changed around the Fermi level with gradual increasing the distance between nitrogen atom and boron atom. Doping positions regulate the electronic structure of the graphene nanoribbons. Interestingly, our results exhibit both semiconducting and half-metallic behavior in response to the boron/nitrogen codoping at different sites without an applied electronic field, opening a possibility in spintronics device application. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3455884]