▎ 摘 要
Three-dimensional (3D) graphene-based polymer/graphene aerogels with excellent mechanical properties are crucial for broad applications. The creation of such polymer/graphene aerogels remains challenging because of the poor dispersion and compatibility of polymer within the graphene matrix. By using the freezing-directed assembly of graphene under the assistance of surfactant, 3D macroporous polystyrene/graphene aerogels (MPS-GAs) with lightweight, superelastivity (80% strain), high strength (80kPa), and good electrical properties have been achieved in this study. The as-prepared MPS-GAs shows excellent electromechanical performance with stable cyclic resilient properties and sensitive resistance responses, thus making the MPS-GAs promising candidates for applications in actuators, elastic conductors, strain/pressure sensors, and wearable devices.