• 文献标题:   Performance improvements of ZnO thin film transistors with reduced graphene oxide-embedded channel layers
  • 文献类型:   Article
  • 作  者:   OH S, LEE TH, CHAE MS, PARK JH, KIM TG
  • 作者关键词:   thin film transistor, zinc oxide, indiumfree, reduced graphene oxide, saturation mobility
  • 出版物名称:   JOURNAL OF ALLOYS COMPOUNDS
  • ISSN:   0925-8388 EI 1873-4669
  • 通讯作者地址:   Korea Univ
  • 被引频次:   1
  • DOI:   10.1016/j.jallcom.2018.11.004
  • 出版年:   2019

▎ 摘  要

ZnO thin film transistors (TFTs) with reduced graphene oxide (RGO)-embedded channel layers were fabricated and their electrical properties were compared with those of ZnO TFTs with no embedded layer (bare ZnO TFT), with Cr-embedded channel layers, and with a RGO/ZnO bilayer channel. Compared to the reference samples, the proposed ZnO TFTs with RGO-embedded layers exhibited very stable unipolar transfer characteristics with enhanced carrier mobility of 1.13 cm(2)V(-1)s(-1), subthreshold swing of 0.53 V decade(-1), and on/off ratio of 2.31 x 10(7), unlike most previous reports of graphene-embedded ZnO TFTs which exhibited undesirable ambipolar behavior. These improvements are attributed to the high carrier mobility of the RGO layer and the formation of the ZnO-RGO-ZnO area as a leakage prevention barrier in the negative bias region. In addition, through X-ray photoelectron spectroscopy analysis, it was found that the formation of Zn-C bonds allows for the stable operation of the proposed RGO-embedded ZnO TFT. These results will provide important information for the design of high-mobility TFT architectures for various applications. (C) 2018 Elsevier B.V. All rights reserved.