▎ 摘 要
Present work demonstrates the fabrication of a copper-based metal-organic framework (Cu-MOF) incorporated with graphene oxide (Cu-BTC-MOF/GO) (BTC = 1,3,5-benzene-tricarboxylate and GO = graphene oxide) via the reflux method. The X-ray diffraction and Fourier transform infrared spectroscopy confirmed the formation of Cu-BTC-MOF in the presence of GO nanosheets. The modification of indium tin oxide (ITO) electrode was carried out by drop-casting of Cu-BTC-MOF/GO composite and electrochemical reduction of GO to electrochemically reduced graphene oxide (ERGO). The Cu-BTC-MOF/ERGO/ITO electrode exhibited notable electrocatalytic activity for the reduction of H2O2 leading to a non-enzymatic electrochemical sensor and this phenomenon can be ascribed to the synergetic effects of Cu-BTC-MOF and graphene. The corresponding calibration curve of the current response showed a linear detection range of 4 mu M to 17.334 mM (R-2 = 0.996) and the limit of detection was estimated to be 0.44 mu M.