• 文献标题:   Designer stabilizer for preparation of pristine graphene/polysiloxane films and networks
  • 文献类型:   Article
  • 作  者:   PARVIZ D, YU ZN, HEDDEN RC, GREEN MJ
  • 作者关键词:  
  • 出版物名称:   NANOSCALE
  • ISSN:   2040-3364 EI 2040-3372
  • 通讯作者地址:   Texas Tech Univ
  • 被引频次:   10
  • DOI:   10.1039/c4nr01431f
  • 出版年:   2014

▎ 摘  要

A conductive polymer film containing pristine graphene was prepared by designing a polysiloxane-based stabilizer for graphene. The stabilizer was prepared by grafting 1-ethynylpyrene to the backbone of a poly(dimethylsiloxane)-co-(methylhydrosiloxane) (PDMS-PHMS) random copolymer by Pt-catalyzed hydrosilylation with a SiH-ethynyl ratio of 1.0 : 1.3. The resulting copolymer was able to stabilize pristine graphene in chloroform solution via p-p interactions between the pyrene groups and graphene sheets. TEM and SEM images show a homogeneous distribution of the graphene in cast films deposited from chloroform. The conductivity of a graphene/PDMS film prepared from copolymer with a 1.7 vol.% graphene loading was measured as 220 S m(-1) after the removal of unbound polymer by a simple separation technique. With a SiH-ethynyl ratio of 1.7 : 1.0, the copolymer self-crosslinked at 110 degrees C in the presence of adventitious moisture, providing a straightforward route to incorporate graphene into silicone elastomers. The crosslinking process (with and without added graphene) was characterized by FT-IR spectroscopy and by swelling and extraction of the obtained networks. Again, unbound polymer removal increases the conductivity of the composite.