• 文献标题:   Graphene oxide as multi-functional initiator and effective molecular reinforcement in PVP/epoxy composites
  • 文献类型:   Article
  • 作  者:   JAYAN JS, PAL K, SARITHA A, DEERAJ BDS, JOSEPH K
  • 作者关键词:   graphene oxide, polymerization, initiator, toughening, epoxy, grafting from
  • 出版物名称:   JOURNAL OF MOLECULAR STRUCTURE
  • ISSN:   0022-2860 EI 1872-8014
  • 通讯作者地址:  
  • 被引频次:   23
  • DOI:   10.1016/j.molstruc.2021.129873 EA JAN 2021
  • 出版年:   2021

▎ 摘  要

In this work, grafting of Polyvinylpyrrolidone (PVP) onto the surface of Graphene Oxide (GO) by following the 'grafting from' technique was carried out by the GO-initiated cationic polymerization of N-Vinylpyrrolidone monomers. The successful grafting of PVP onto GO sheets was confirmed with the help of various techniques like FTIR, XRD, Raman and XPS. The PVP polymer chain grafted GO (GO-g-PVP) was incorporated into the epoxy matrix as a reinforcement in order to investigate the effect in thermo-mechanical properties of epoxy. From static mechanical testing, it was observed that neat PVP adversely affects the mechanical (tensile) strength of epoxy, whereas the GO-g-PVP shows an improvement of about similar to 13% when compared to the virgin epoxy composites. Rheological data reveals the transformation of epoxy resin from the Newtonian behavior to shear thickening nature by the incorporation of GO-g-PVP. Dynamic mechanical analysis and the intensity of tan dcurves also ratify the rheological observation. The fracture toughness of epoxy composites showed a significant improvement of about 190% than the neat epoxy composites. Electron microscopes are employed to observe the Fractograms to systematically analyze the toughening mechanisms involved. Thermal stability and the temperature of glass transitions were optimized by TGA and DSC analysis. (C) 2021ElsevierB.V. Allrightsreserved.