• 文献标题:   The efficient enrichment of U(VI) by graphene oxide-supported chitosan
  • 文献类型:   Article
  • 作  者:   CHENG WC, WANG ML, YANG ZG, SUN YB, DING CC
  • 作者关键词:  
  • 出版物名称:   RSC ADVANCES
  • ISSN:  
  • 通讯作者地址:   Sichuan Univ
  • 被引频次:   35
  • DOI:   10.1039/c4ra09541c
  • 出版年:   2014

▎ 摘  要

Graphene oxide-supported chitosan (GO-Ch) composites were synthesized using a covalent method for U(VI) adsorption and were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), differential thermal analysis (DTA) and extended X-ray absorption fine structure (EXAFS). The characteristic results indicated that Ch was successfully grafted onto GO. The adsorption of U(VI) on GO-Ch was investigated under different environmental conditions. The adsorption kinetics showed that the adsorption of U(VI) on GO-Ch followed the pseudo-second-order equation. The maximum adsorption capacity of U(VI) on GO-Ch at pH 4.0 and T = 303 K calculated from the Langmuir model was 225.78 mg g(-1). Thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that U(VI) adsorption on GO-Ch was an endothermic and spontaneous process. The batch desorption indicated U(VI) cannot be completely desorbed from GO-Ch without intervention, suggesting the irreversible adsorption of U(VI) on GO-Ch. The analysis of FT-IR spectra suggested that the interaction mechanism of U(VI) on GO-Ch was mainly chemical adsorption by -NH2 and -COOH groups. According to EXAFS analysis, the peaks at similar to 2.9 angstrom can be satisfactorily fitted by the U-C/N shell, revealing the formation of inner-sphere surface complexes. It is demonstrated that the GO-Ch nanocomposite can be a promising material for the preconcentration and solidification of U(VI) from large volumes of aqueous solution.