▎ 摘 要
An electrochemically stable hybrid structure material consisting of porous silicon (Si) nanoparticles, carbon nanotubes (CNTs), and reduced graphene oxide (rGO) is developed as an anode material (Si/rGO/CNT) for full cell lithium-ion batteries (LIBs). In the developed hybrid material, the rGO provides a robust matrix with sufficient void space to accommodate the volume change of Si during lithiation/delithiation and a good electric contact. CNTs act as a mechanically stable and electrically conductive support to enhance the overall mechanical strength and conductivity. The developed Si/rGO/CNT composite anode has been first tested in half cell and then in full cell lithium-ion batteries. In half cell, the composite anode shows a high reversible capacity of 1100 mAh g(-1) with good capacity retention over 500 cycles when cycled at 1 A g(-1). In a full cell lithium-ion battery paired up with LiNi1/3Mn1/3Co1/3O2 (NMC) cathodes, the composite anode shows a specific charge capacity of 161.4 mAh g(-1) and a discharge capacity of 152.8 mAh g(-1), respectively, with a Coulombic efficiency of 94.7%.