• 文献标题:   Multidimensional Co-Exfoliated Activated Graphene-Based Carbon Hybrid for Supercapacitor Electrode
  • 文献类型:   Article
  • 作  者:   PHIRI J, GANE P, MALONEY TC
  • 作者关键词:   activated carbon, electrode, graphene, nanomicrofibrillated cellulose, supercapacitor, carbon hybrid
  • 出版物名称:   ENERGY TECHNOLOGY
  • ISSN:   2194-4288 EI 2194-4296
  • 通讯作者地址:   Aalto Univ
  • 被引频次:   1
  • DOI:   10.1002/ente.201900578 EA AUG 2019
  • 出版年:   2019

▎ 摘  要

Herein, a simple route for the fabrication of highly porous-activated few-layer graphene for application in supercapacitors as an electrode material is reported. The process makes use of natural and renewable materials, which is an essential prerequisite, especially for large-scale application. Few-layer graphene is exfoliated in aqueous suspension with the aid of microfibrillated cellulose (MFC), an environmentally benign eco-friendly medium that is low-cost, biodegradable, and sustainable. The exfoliated product is subsequently activated to increase the surface area and to form the desired pore structure. The prepared electrode materials exhibit a high surface area of up to 720 m(2) g(-1). MFC is also used as a nontoxic environmentally friendly binder in the electrode application. The electrochemical performance is evaluated in a three-electrode system, and the prepared samples show a high specific capacitance of up to 120 F g(-1) at a current density of 1 A g(-1). The samples also exhibit a high capacity-retention rate of about 99% after 5000 cycles and 97% after 10 000 cycles. The proposed method for the fabrication of graphene-based supercapacitor electrode materials, based largely on renewable and sustainable materials, offers potential for commercially viable applications.