• 文献标题:   Dual-Heteroatom-Doped Reduced Graphene Oxide Sheets Conjoined CoNi-Based Carbide and Sulfide Nanoparticles for Efficient Oxygen Evolution Reaction
  • 文献类型:   Article
  • 作  者:   ZAKARIA MB, ZHENG DH, APFEL UP, NAGATA T, KENAWY ES, LIN JJ
  • 作者关键词:   layered hybrid, annealing, heterostructured electrode, functional nanomaterial, electrocatalysi, energy conversion
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   Qingdao Univ Sci Technol QUST
  • 被引频次:   1
  • DOI:   10.1021/acsami.0c06141
  • 出版年:   2020

▎ 摘  要

Intensive research is being conducted into highly efficient and cheap nanoscale materials for the electrocatalytic oxidation of water. In this context, we built heterostructures of multilayered CoNi-cyanide bridged coordination (CoNi-CP) nanosheets and graphene oxide (GO) sheets (CoNi-CP/GO) as a source for heterostructured functional electrodes. The layered CoNi-CP/GO hybrid components heated in nitrogen gas (N2) at 450 degrees C yield CoNi-based carbide (CoNi-C) through thermal decomposition of CoNi-CP, while GO is converted into reduced GO (rGO) to finally form a CoNi-C/rGO-450 composite. The CoNi-C/rGO-450 composite shows a reasonable efficiency for oxygen evolution reaction (OER) through water oxidations in alkaline solution. Meanwhile, regulated annealing of CoNi-CP/GO in N2 with thiourea at 450 and 550 degrees C produces CoNi-based sulfide (CoNi-S) rather than CoNi-C between rGO sheets co-doped by nitrogen (N) and sulfur (S) heteroatoms (NS-rGO) to form CoNi-S/NS-rGO-450 and CoNi-S/NS-rGO-550 composites, respectively. The CoNi-S/NS-rGO-550 shows the best efficiency for electrocatalytic OER among all electrodes with an overpotential of 290 mV at 10 mA cm(-2) and a Tafel slope of 79.5 mV dec(-1). By applying the iR compensation to remove resistance of the solution (2.1 O), the performance is further improved to achieve a current density of 10 mA cm(-2) at an overpotential of 274 mV with a Tafel slope of 70.5 mV dec(-1). This result is expected to be a promising electrocatalyst compared to the currently used electrocatalysts and a step for fuel cell applications in the future.