• 文献标题:   Resonance Raman Spectrum of Doped Epitaxial Graphene at the Lifshitz Transition
  • 文献类型:   Article
  • 作  者:   HELL MG, EHLEN N, SENKOVSKIY BV, HASDEO EH, FEDOROV A, DOMBROWSKI D, BUSSE C, MICHELY T, DI SANTO G, PETACCIA L, SAITO R, GRUNEIS A
  • 作者关键词:   alkali doping, graphene, uhv raman, arpes, lifshitz
  • 出版物名称:   NANO LETTERS
  • ISSN:   1530-6984 EI 1530-6992
  • 通讯作者地址:   Univ Cologne
  • 被引频次:   4
  • DOI:   10.1021/acs.nanolett.8b02979
  • 出版年:   2018

▎ 摘  要

We employ ultra-high vacuum (UHV) Raman spectroscopy in tandem with angle-resolved photoemission (ARPES) to investigate the doping-dependent Raman spectrum of epitaxial graphene on Ir(111). The evolution of Raman spectra from pristine to heavily Cs doped graphene up to a carrier concentration of 4.4 X 10(14) cm(-2) is investigated. At this doping, graphene is at the onset of the Lifshitz transition and renormalization effects reduce the electronic bandwidth. The optical transition at the saddle point in the Brillouin zone then becomes experimentally accessible by ultraviolet (UV) light excitation, which achieves resonance Raman conditions in close vicinity to the van Hove singularity in the joint density of states. The position of the Raman G band of fully doped graphene/Ir(111) shifts down by similar to 60 cm(-1). The G band asymmetry of Cs doped epitaxial graphene assumes an unusual strong Fano asymmetry opposite to that of the G band of doped graphene on insulators. Our calculations can fully explain these observations by substrate dependent quantum interference effects in the scattering pathways for vibrational and electronic Raman scattering.