• 文献标题:   Realizing One-Dimensional Electronic States in Graphene via Coupled Zeroth Pseudo-Landau Levels
  • 文献类型:   Article
  • 作  者:   LIU YW, ZHAN Z, WU ZW, YAN C, YUAN SJ, HE L
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW LETTERS
  • ISSN:   0031-9007 EI 1079-7114
  • 通讯作者地址:  
  • 被引频次:   3
  • DOI:   10.1103/PhysRevLett.129.056803
  • 出版年:   2022

▎ 摘  要

Strain-induced pseudomagnetic fields can mimic real magnetic fields to generate a zero-magnetic-field analog of the Landau levels (LLs), i.e., the pseudo-Landau levels (PLLs), in graphene. The distinct nature of the PLLs enables one to realize novel electronic states beyond what is feasible with real LLs. Here, we show that it is possible to realize exotic electronic states through the coupling of zeroth PLLs in strained graphene. In our experiment, nanoscale strained structures embedded with PLLs are generated along a one-dimensional (1D) channel of suspended graphene monolayer. Our results demonstrate that the zeroth PLLs of the strained structures are coupled together, exhibiting a serpentine pattern that snakes back and forth along the 1D suspended graphene monolayer. These results are verified theoretically by large-scale tight-binding calculations of the strained samples. Our result provides a new approach to realizing novel quantum states and to engineering the electronic properties of graphene by using localized PLLs as building blocks.