▎ 摘 要
Here we describe a new method for the direct patterned synthesis of graphene meshes on Cu foils that use self-assembled silica sphere arrays as growth masks. Structural analyses based on electron microscopy and Raman spectroscopy showed that the graphene meshes are mostly single- or double-layer necks with empty holes that have abrupt edges. On the basis of experimental observations, we proposed the model illustrating the dissociation of carbon atoms at the Cu/silica interface through catalytic hydrogenation of the graphene lattice. Moreover, our approach can minimize problems associated with the graphene etching process, including contamination and exposure to reactive plasma. This enables stable electronic doping through covalent C-N bonds at the edges of graphene meshes.