• 文献标题:   Mo2C-embedded biomass-derived honeycomb-like nitrogen-doped carbon nanosheet/graphene aerogel films for highly efficient electrocatalytic hydrogen evolution
  • 文献类型:   Article
  • 作  者:   WANG B, WU XY, ZHANG XY, PANG GG, LI SM
  • 作者关键词:  
  • 出版物名称:   NEW JOURNAL OF CHEMISTRY
  • ISSN:   1144-0546 EI 1369-9261
  • 通讯作者地址:   Tangshan Univ
  • 被引频次:   1
  • DOI:   10.1039/c9nj05220h
  • 出版年:   2020

▎ 摘  要

Honeycomb-like Mo2C@nitrogen-doped carbon nanosheet/graphene (Mo2C@N-DC/G) aerogel films were synthesized successfully by dissolution and coagulation of chitin and graphene oxide, and subsequent simultaneous carbonization of chitin and carbothermal reduction of hexaammonium molybdate. The resulting Mo2C@N-DC/G aerogel films exhibited homogeneous interconnected open-cell architectures, and the Mo2C nanoparticles were homogeneously embedded within a chitin/graphene oxide aerogel derived 3D highly conductive N-DC/G nanonetwork. Benefitting from the unique three-dimensional honeycomb-like architecture and characteristics with excellent electron transportation, abundant active sites, strong interaction between Mo2C nanocrystals and N-DC/G frameworks, the as-prepared catalyst exhibited remarkable catalytic activity and endurance for hydrogen evolution reaction (HER). The optimized Mo2C@N-DC/G electrocatalyst exhibits excellent HER electrocatalytic activity with a low overpotential of 107 mV to achieve a cathodic current density of 10 mA cm(-2) and a small Tafel slope of 65.8 mV dec(-1) in 0.5 M H2SO4 solution. Moreover, it also displays outstanding long-term electrochemical stability, exhibiting no significant decay after 1500 cycles and 15 h of continuous testing at fixed overpotentials. This work will illuminate an entirely new avenue for exploring various low-cost, high-performance self-supported electrode materials for various electrochemical energy conversion and storage applications.