▎ 摘 要
A graphene oxide-based nano-metal composite oxide CuFe2O4/GO was successfully prepared by a versatile self-assembly approach. Structure and morphological characterization of CuFe2O4/GO nanocomposite were studied in detail by a series of characterization techniques including XRD, FT-IR, XPS, BET, SEM, and TEM. The results revealed that the self-assembly process did not destroy the composition and morphology of the spinel-structured CuFe2O4 particle, and the transparent GO sheets with wrinkled and rough texture are tightly coated on the surface of CuFe2O4 nanoparticles like a layer of thin gauze clothing. The particle size of CuFe2O4 is about 200nm. Catalytic activity of as-prepared CuFe2O4/GO nanocomposite on the thermal decomposition of cyclotrimethylene trinitramine (RDX) was investigated via differential scanning calorimetry (DSC). The experimental results show that the CuFe2O4/GO nanocomposite has much higher catalytic activity than single CuFe2O4 nanoparticles and GO. Thermal decomposition temperature and apparent activation energy of RDX were reduced from 241.27 to 220.34 degrees C and from 172.6 to 142.56kJmol(-1), respectively. The improved performance could be attributed to the positive synergistic effect between CuFe2O4 nanoparticles and GO.