• 文献标题:   Engineering carbon chains from mechanically stretched graphene-based materials
  • 文献类型:   Article
  • 作  者:   ERDOGAN E, POPOV I, ROCHA CG, CUNIBERTI G, ROCHE S, SEIFERT G
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW B
  • ISSN:   1098-0121
  • 通讯作者地址:   Tech Univ Dresden
  • 被引频次:   42
  • DOI:   10.1103/PhysRevB.83.041401
  • 出版年:   2011

▎ 摘  要

The electrical response of graphene-based materials can be tailored under mechanical stress. We report different switching behaviors that take place in mechanically deformed graphene nanoribbons prior to the breakage of the junction. By performing tight-binding molecular dynamics, the study of structural changes of graphene nanoribbons with different widths is achieved, revealing that carbon chains are the ultimate bridges before the junction breaks. The electronic and transport calculations show that binary ON/OFF states can be switched prior to and during breakage depending on the atomic details of the nanoribbon. This work supports the interpretation of recent experiments on nonvolatile memory element engineering based on graphene break junctions.