• 文献标题:   Hydrothermal synthesis of graphene-LaFeO3 composite supported with Cu-Co nanocatalyst for higher alcohol synthesis from syngas
  • 文献类型:   Article
  • 作  者:   NIU T, LIU GL, CHEN Y, YANG J, WU J, CAO Y, LIU Y
  • 作者关键词:   graphene, lafeo3, perovskitetype oxide, cuco alloy, higher alcohols synthesi
  • 出版物名称:   APPLIED SURFACE SCIENCE
  • ISSN:   0169-4332 EI 1873-5584
  • 通讯作者地址:   Tianjin Univ
  • 被引频次:   20
  • DOI:   10.1016/j.apsusc.2015.12.164
  • 出版年:   2016

▎ 摘  要

The composite of graphene and a perovskite-type oxide (PTO) should be an attractive new material, owing to the special properties of graphene and the flexibility of PTO. Both graphene and PTO are promising support for some metallic nanoparticles. Therefore, in this work, taking LaFeO3 as the representative for PTO, a novel composite of graphene sheets-LaFeO3 has been prepared by using hydrothermal synthesis, and bimetallic nanoparticles of Cu-Co have been loaded on the composite. The resultant catalyst is applied to higher alcohols synthesis (HAS) from syngas. The morphology, structure and the state of the bimetallic composite catalyst are characterized by using techniques of SEM, TEM, AFM, XRD, TPR, Raman and N-2 adsorption-desorption. For the graphene-LaFeO3 support, the graphene sheets are embedded into the bulk LaFeO3 or uniformly deposited on the surface of the LaFeO3 grains, resulting in high specific surface area. And the mass transferring ability of the bimetallic catalyst is optimized by uniform mixing of graphene and LaFeO3 and the formation of the mesopores. For the active component, the Cu-Co alloy nanoparticles are highly dispersed on the graphene-LaFeO3 composite, which leads to the high activity, high selectivity and excellent stability to higher alcohols. (C) 2015 Elsevier B.V. All rights reserved.