▎ 摘 要
A room-temperature polymer-assisted transfer process is developed for large-area, single-layer graphene grown by means of chemical vapor deposition (CVD). This process leads to transferred graphene layers free of polymer contamination. The absence of polymer residues boosts the surface-enhanced Raman scattering (SERS) of the CVD graphene with gold nanoparticles (Au NPs) deposited atop by evaporation. The SERS enhancement of the CVD graphene reaches similar to 120 for the characteristic 2D peak of graphene, the highest enhancement factor achieved to date, when the Au NPs are at the threshold of percolation. Our simulation supported by experiment suggests that the polymer residues persistently present on the graphene transferred by the conventional polymer-assisted method are equivalent to an ultrathin film of less than 1 nm thickness. The presence of polymer residues drastically reduces SERS due to the separation of the Au NPs from the underlying graphene. The scalability of CVD graphene opens up for the possibility of graphene-based SERS sensors. (C) 2015 Elsevier Ltd. All rights reserved.