• 文献标题:   Laser-induced graphene for environmental applications: progress and opportunities
  • 文献类型:   Review
  • 作  者:   CHENG L, GUO WH, CAO XH, DOU YB, HUANG LB, SONG Y, SU JJ, ZENG ZY, YE RQ
  • 作者关键词:  
  • 出版物名称:   MATERIALS CHEMISTRY FRONTIERS
  • ISSN:  
  • 通讯作者地址:  
  • 被引频次:   21
  • DOI:   10.1039/d1qm00437a EA APR 2021
  • 出版年:   2021

▎ 摘  要

The successful exfoliation of few-layer graphene from monolith graphite in 2004 has stimulated an exponential growth in graphene research. Ten years later, a facile and cost-effective method was discovered to synthesize high-quality graphene by directly scribing commercially available polymer using a CO2 laser under ambient conditions. The product, denoted as laser-induced graphene (LIG), featured high porosity, excellent electron conductivity, intrinsic photothermal effects and tunable surface properties. Since the discovery, LIG has attracted intense attention from both academia and industry and found broad applications in areas such as energy conversion and storage, sensors, antibacterials and desalination. In this review, we focus on the recent advances of LIG in environmental applications. We start with the development of synthetic techniques, including the precise engineering of LIG properties and the transfer strategies towards functional LIG composites. The achievement in synthesis enables the environmental applications of LIG in a broad context. Finally, the challenges and opportunities in solving different environmental issues using LIG are discussed.