• 文献标题:   Preparation of 3D micro/mesoporous LiFePO4 composite wrapping with porous graphene oxide for high-power lithium ion battery
  • 文献类型:   Article
  • 作  者:   YANG CC, HSU YH, SHIH JY, WU YS, KARUPPIAH C, LIOU TH, LUE SJ
  • 作者关键词:   lifepo4/c, hydrothermal, graphene oxide, porous graphene oxide, spray
  • 出版物名称:   ELECTROCHIMICA ACTA
  • ISSN:   0013-4686 EI 1873-3859
  • 通讯作者地址:   Ming Chi Univ Technol
  • 被引频次:   10
  • DOI:   10.1016/j.electacta.2017.11.126
  • 出版年:   2017

▎ 摘  要

A 3D spray-dried micro/mesoporous LiFePO4/porous graphene oxide/C (denoted as SP-LFP/PGO/C) composite material is synthesized via a three-step process, i.e., hydrothermal process, carbon coating, and spray dry method in sequence. The 2D porous graphene oxide (denoted as PGO) material is first prepared through an activation method. The galvanostatic charge-discharge measurements of LFP composites without graphene oxide, with 1 wt% graphene oxide, and 1 wt% PGO are conducted in the potential range of 2-3.8 V at various rates (0.1-10C). It is revealed that the SP-LFP/PGO/C material shows the best performance among three samples. The discharge capacities of the SP-LFP/PGO/C composites are observed to 160, 152, 151, 149, 144, 139, 127 mAh g(-1) at 0.1C, 0.2C, 0.5C, 1C, 3C, 5C and 10C rate. In particular, the discharge capacity of the SP-LFP/PGO/C composite with 1 wt% PGO is 107 mAh g(-1) after 1000 cycles at a 10C rate, and its capacity retention is ca. 97%. It is due to the unique structural and geometrical feature of SP-LFP/PGO/C composite, there the diamond-like (rhombus) LFP nanoparticles are embedded in porous GO matrix which forming a porous three-dimensional network for fast electronic and ionic transport channels. (c) 2017 Elsevier Ltd. All rights reserved.