• 文献标题:   Carrier generation and recombination rate in armchair graphene nanoribbons
  • 文献类型:   Article
  • 作  者:   AHMADI E, ASGARI A
  • 作者关键词:  
  • 出版物名称:   EUROPEAN PHYSICAL JOURNAL B
  • ISSN:   1434-6028
  • 通讯作者地址:   Univ Tabriz
  • 被引频次:   4
  • DOI:   10.1140/epjb/e2012-30469-3
  • 出版年:   2013

▎ 摘  要

Armchair graphene nanoribbons (A-GNRs), with a tunable energy gap, are an alternative structure for use in optoelectronic devices. The performance of these optoelectronic devices critically depends on the carrier generation and recombination rates, which have been calculated in this paper. Because of the 1D band structure of A-GNRs, carrier scattering, generation and recombination rates in these structures would be completely different from those in 2D graphene sheets. In this paper, using the tight binding model, and by considering the edge deformation and Fermi golden rule, we find the band structure, and the carrier generation and recombination rates for pure A-GNR due to optical and acoustic phonons, as well as Line Edge Roughness (LER) scatterings. The obtained results show that the total generation and recombination rates increase with increasing A-GNR width and eventually saturate for wide ribbons. These rates increase as the carrier concentration is increased (which has been considered homogenous along ribbon width) and temperature. Also, despite the large LER scattering in narrow ribbons, the generation and recombination rates are less for A-GNRs than for graphene sheets. Using this theoretical model, one can find the suitable A-GNR structure for the design of optoelectronic devices.