• 文献标题:   Polarizability effects in molecular dynamics simulations of the graphene-water interface
  • 文献类型:   Article
  • 作  者:   HO TA, STRIOLO A
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF CHEMICAL PHYSICS
  • ISSN:   0021-9606
  • 通讯作者地址:   Univ Oklahoma
  • 被引频次:   60
  • DOI:   10.1063/1.4789583
  • 出版年:   2013

▎ 摘  要

The importance of including the polarizability of both water and graphene in molecular dynamics simulations of the water/graphene system was quantified. A thin film of either rigid single point charge extended (SPC/E) water or polarizable simple 4-site water model with Drude polarizability (SWM4_DP) water on non-polarizable and polarizable graphene surfaces was simulated. The graphene surface was either maintained neutral or charged, positively and negatively. The results suggest that SPC/E and SWM4_DP water models yield very similar predictions for the water structural properties on neutral non-polarizable graphene, although they yield slightly different dynamical properties of interfacial water on neutral non-polarizable graphene. More pronounced were the differences obtained when graphene was modeled with a polarizable force field. In particular, the polarizability of graphene was found to enhance the number of interfacial SWM4_DP water molecules pointing one of their OH bonds towards the neutral surface. Despite this structural difference, the dynamical properties predicted for the interfacial SWM4_DP water were found to be independent on polarizability as long as the polarizability of a carbon atom is smaller than alpha = 0.878 angstrom. On charged graphene surfaces, the effect of polarizability of graphene on structural properties and some dynamical properties of SWM4_DP water is negligible because electrostatic forces due to surface charge dominate polarization forces, as expected. For all cases, our results suggest that the hydrogen bond network is insensitive to the polarizability of both water and graphene. Understanding how these effects will determine the accumulation of ions near neutral or charged graphene could have important implications for applications in the fields of energy storage and water desalination. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789583]