• 文献标题:   Correlative radioimaging and mass spectrometry imaging: a powerful combination to study C-14-graphene oxide in vivo biodistribution
  • 文献类型:   Article
  • 作  者:   CAZIER H, MALGORN C, GEORGIN D, FRESNEAU N, BEAU F, KOSTARELOS K, BUSSY C, CAMPIDELLI S, PINAULT M, MAYNEL HERMITE M, TARAN F, JUNOT C, FENAILLE F, SALLUSTRAU A, COLSCH B
  • 作者关键词:  
  • 出版物名称:   NANOSCALE
  • ISSN:   2040-3364 EI 2040-3372
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1039/d2nr06753f EA FEB 2023
  • 出版年:   2023

▎ 摘  要

Research on graphene based nanomaterials has flourished in the last decade due their unique properties and emerging socio-economic impact. In the context of their potential exploitation for biomedical applications, there is a growing need for the development of more efficient imaging techniques to track the fate of these materials. Herein we propose the first correlative imaging approach based on the combination of radioimaging and mass spectrometry imaging for the detection of Graphene Oxide (GO) labelled with carbon-14 in mice. In this study, C-14-graphene oxide nanoribbons were produced from the oxidative opening of C-14-carbon nanotubes, and were then intensively sonicated to provide nano-size C-14-GO flakes. After Intravenous administration in mice, C-14-GO distribution was quantified by radioimaging performed on tissue slices. On the same slices, MS-imaging provided a highly resolved distribution map of the nanomaterial based on the detection of specific radical anionic carbon clusters ranging from C2(-) to C9(-) with a base peak at m/z 72 (C-12) and 74 (C-14) under negative laser desorption ionization mass spectrometry (LDI-MS) conditions. This proof of concept approach synergizes the strength of each technique and could be advantageous in the pre-clinical development of future Graphene-based biomedical applications.