▎ 摘 要
Cobalt nanocrystal has been widely used as nano-enzyme for sensing and catalysis due to its high stability and low cost, but poor catalytic activity limits its applications in bioanalysis. The study reports one strategy for synthesis of cobalt-graphene nanohybrid. Histidine-functionalized graphene quantum dot (His-GQD) was bound to graphene sheet via 7C-7C stacking and then combined with cobalt ions in the presence of cetyltrimethylammonium chloride to form stable complex and finally reduced under nitrogen to obtain Co-His-GQDG. The as-synthesized nanohybrid offers well-defined three-dimensional structure and quasisuperparamagnetism. The cobalt nanoparticles were well dispersed on graphene sheets. The unique structure improves oxidase-like activity of Co-His-GQD-G. Further, Co-His-GQD-G was used as the nanozyme for colorimetric detection of chlorpyrifos. Co-His-GQD-G catalyzes oxidization of 3,3 ',5,5 '-tetramethylbenzidine into blue product. Thiocholine produced by hydrolysis of acetylthiocholine under catalysis of acetylcholinesterase inhibits catalytic activity of Co-His-GQD-G and leads to a reduced oxidization rate. Chlorpyrifos inhibits activity of acetylcholinesterase and brings an enhanced absorbance of blue product. The absorbance at 652 nm linearly increases with increasing chlorpyrifos concentration in the range of 2-20 ng mL-1 with detection limit of 0.57 ng mL-1 (S/N = 3). The method was successfully applied in determination of chlorpyrifos in peach by preparing CoHis-GQD-G magnetic gel sheet.