▎ 摘 要
In this study, graphene oxide (GO) was functionalized with polyethylene glycol (PEG) to understand the effect of PEGlayted GO on properties of chitosan-based nanocomposite scaffold. GO was synthesized according to modified Hummer's method and covalently linked to polymeric chains of PEG to produce polyethylene glycolated GO (PGO). Successful preparation of GO and PGO was confirmed by FT-IR and Raman techniques, where the chemical bonding of PEG and GO nanosheets were concluded based on PGOs' lower zeta potential compared to GO. Nanocomposite scaffolds were prepared by adding equal amounts of GO and PGO into 2% (w/v) chitosan (Cs) solutions. The highly porous scaffolds were developed by lyophilization of solutions. Incorporation of GO and PGO into chitosan scaffold network resulted in uniform and spherical pores. Modified samples offered higher porosity and density, indicating adequate scaffold structure. Improvements in the physical properties of prepared chitosan scaffolds were concluded through higher water absorption and retention values. Compressive strength measurement showed 6.33 and 5.5 times improvement respectively for Cs-GO and Cs-PGO samples compared to Cs scaffold. The Cs-GO scaffolds showed minimum susceptibility toward enzymatic degradation and higher degrees of protein adsorption (26% and 23% improvement in value of adsorbed protein respectively for Cs-GO and Cs-PGO compared to Cs scaffold) and biomineral formation on scaffold surface. Also, Cs-PGO sample showed the highest degree of cell viability and lower hemolysis than both Cs and Cs-GO scaffolds. Investigations showed that cell infiltration into scaffold porous structure was more prominent in Cs-PGO scaffolds than in Cs and Cs-GO scaffolds.