• 文献标题:   C2N-graphene supported single-atom catalysts for CO2 electrochemical reduction reaction: mechanistic insight and catalyst screening
  • 文献类型:   Article
  • 作  者:   CUI XD, AN W, LIU XY, WANG H, MEN Y, WANG JG
  • 作者关键词:  
  • 出版物名称:   NANOSCALE
  • ISSN:   2040-3364 EI 2040-3372
  • 通讯作者地址:   Shanghai Univ Engn Sci
  • 被引频次:   10
  • DOI:   10.1039/c8nr04961k
  • 出版年:   2018

▎ 摘  要

Single-atom catalysts (SACs) have emerged as an excellent platform for enhancing catalytic performance. Inspired by the recent experimental synthesis of nitrogenated holey 2D graphene (C2N-h2D) (Mahmood et aL, Nat. Commun., 2015, 6, 6486-6493), we report density functional theory calculations combined with computational hydrogen electrode model to show that C2N-h2D supported metal single atoms (M@C2N) are promising electrocatalysts for CO2 reduction reaction (CO2 RR). M confined at pyridinic N6 cavity promotes activation of inert O=C=O bonds and subsequent protonation steps, with *COOH -> *CO -> CHO predicted to be the primary pathway for producing methanol and methane. It is found that *CO + H+ + e -> *CHO is most likely to be the potential determining step; breaking the scaling relation of *CO and *CHO binding on M@C2N SACs may simply be a rare event that is sensitively controlled by the detailed geometry of the adsorbate. Among twelve metals screened, M@C2N SACs where M = Ti, Mn, Fe, Co, Ni, Ru were identified to be effective in catalyzing CO2 RR with lowered overpotentials (0.58 V-0.80 V).