• 文献标题:   Oxidation of Graphene on Metals
  • 文献类型:   Article
  • 作  者:   STARODUB E, BARTELT NC, MCCARTY KF
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF PHYSICAL CHEMISTRY C
  • ISSN:   1932-7447
  • 通讯作者地址:   Sandia Natl Labs
  • 被引频次:   82
  • DOI:   10.1021/jp912139e
  • 出版年:   2010

▎ 摘  要

We Use low-energy electron microscopy to investigate how graphene is removed from Ru(0001) and Ir(111) by reaction with oxygen. We find two mechanisms on Ru(0001). At short times, oxygen reacts with carbon monomers on the surrounding Ru surface, decreasing their concentration below the equilibrium value. This undersaturation causes a flux of carbon from graphene to the monomer gas. In this initial mechanism. graphene is etched at a rate that is given precisely by the same nonlinear dependence oil carbon monomer concentration that governs growth. Thus, during both growth and etching, carbon attaches and detaches to graphene as clusters of several carbon atoms. At later times, etching accelerates. We present evidence that this process involves intercalated oxygen, which destabilizes graphene. On Ir, this mechanism creates observable holes. It also occurs Mostly quickly near wrinkles in the graphene islands, depends oil the orientation of the graphene with respect to the Ir substrate, and, in contrast to the first mechanism, call Increase the density of carbon monomers. We also observe that both layers of bilayer graphene islands oil Ir etch together, not sequentially.