• 文献标题:   Superb electromagnetic wave-absorbing composites based on large-scale graphene and carbon nanotube films
  • 文献类型:   Article
  • 作  者:   LI JS, LU WB, SUHR J, CHEN H, XIAO JQ, CHOU TW
  • 作者关键词:  
  • 出版物名称:   SCIENTIFIC REPORTS
  • ISSN:   2045-2322
  • 通讯作者地址:   Univ Delaware
  • 被引频次:   14
  • DOI:   10.1038/s41598-017-02639-7
  • 出版年:   2017

▎ 摘  要

Graphene has sparked extensive research interest for its excellent physical properties and its unique potential for application in absorption of electromagnetic waves. However, the processing of stable large-scale graphene and magnetic particles on a micrometer-thick conductive support is a formidable challenge for achieving high reflection loss and impedance matching between the absorber and free space. Herein, a novel and simple approach for the processing of a CNT film-Fe3O4-large scale graphene composite is studied. The Fe3O4 particles with size in the range of 20-200 nm are uniformly aligned along the axial direction of the CNTs. The composite exhibits exceptionally high wave absorption capacity even at a very low thickness. Minimum reflection loss of -44.7 dB and absorbing bandwidth of 4.7 GHz at -10 dB are achieved in composites with one-layer graphene in six-layer CNT film-Fe3O4 prepared from 0.04 M FeCl3. Microstructural and theoretical studies of the wave-absorbing mechanism reveal a unique Debye dipolar relaxation with an Eddy current effect in the absorbing bandwidth.