▎ 摘 要
In this work, laser induced graphene (LIG) was successfully fabricated on microporous ceramic membranes. The surface area, morphology, and chemical characterizations were performed on the LIG layer. Water contact angle measurements showed the hydrophobicity of LIG. Pure water and solvents with different polarities were used to understand the solvent flux behavior of LIG membrane. The LIG membrane showed very high non-polar solvent fluxes and remarkably low water permeability, and thus, the transport through the LIG membrane is related to dipole moment and dielectric constant, represented by solvent polarity. The LIG membrane achieved 90% rejection for 255 nm diameter silica particles, suggesting the presence of submicron size connecting pore channels that dominate the transport mechanism.