▎ 摘 要
In this study, inorganic cesium lead iodide (CsPbI3) perovskite nanoparticles (PNPs) and perovskite nanowires (PNWs) with single-layer graphene (SLG) are combined to obtain 0D-2D PNP-SLG and 1D-2D PNW-SLG hybrids with improved light harvesting. Time-resolved single-nanostructure photoluminescence studies of PNPs, PNWs, and related hybrids reveal (i) quasi-two-state photoluminescence blinking in PNPs, (ii) highly polarized photoluminescence emitted by PNWs and (iii) efficient interfacial electron transfer between perovskite nanostructures and SLG in both PNP-SLG and PNW-SLG hybrids. Doping of poorly absorbing, highly conductive SLG with perovskite nanocrystals and nanowires provides a simple, yet efficient path to obtain hybrids with increased light-harvesting properties for potential utilization in the next-generation photodetectors and photovoltaic devices, including polarization sensitive photodetectors.