▎ 摘 要
Introducing quantum confinement has uncovered a rich set of interesting quantum phenomena and allows one to directly probe the physics of confined (quasi-)particles. In most experiments, however, an electrostatic potential is the only available method to generate quantum dots in a continuous system to confine (quasi-)particles. Here we demonstrate experimentally that inhomogeneous pseudomagnetic fields in strained graphene can introduce exotic quantum confinement of massless Dirac fermions. The pseudomagnetic fields have opposite directions in the two distinct valleys of graphene. By adding and tuning real magnetic fields, the total effective magnetic fields in the two valleys are imbalanced. By that we realized valley-contrasting spatial confinement, which lifts the valley degeneracy and results in fieldtunable valley-polarized confined states in graphene. Our results provide a new avenue to manipulate the valley degree of freedom.