• 文献标题:   Probing the effect of solvents on the electrochemical performance of graphene incorporated nickel-based metal organic frameworks
  • 文献类型:   Article
  • 作  者:   ZHENG SQ, LIM SS, FOO CY, HAW CY, CHIU WS, CHIA CH, KHIEW PS
  • 作者关键词:   binary solvent, metal organic framework, graphene, electrochemical performance, supercapacitor, high performance
  • 出版物名称:   JOURNAL OF ELECTROANALYTICAL CHEMISTRY
  • ISSN:   1572-6657 EI 1873-2569
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1016/j.jelechem.2022.116860 EA OCT 2022
  • 出版年:   2022

▎ 摘  要

Highly porous coordinated metal-organic frameworks (MOFs) have attracted enormous interest by virtue of their promising electrochemical performance in the application of energy storage systems. In this study, the associated electrochemical performance of nickel-based MOFs ([Ni-3(OH)(2)(C8H4O4)2(H2O)(4)]center dot 2H(2)O, Ni-MOFs) synthesized in different solvent systems was systematically investigated. It is found that binary solvents with high polarity and viscosity were favorable for the formation of small-sized nanosheets. Meanwhile, graphene was incorporated into Ni-MOFs to further enhance the electrochemical performance of the nanocomposite via a facile one-pot solvothermal approach. By taking advantage of the synergistic effect between highly conductive graphene nanosheets and hierarchical Ni-MOFs, the as-synthesized Ni-MOF/graphene nanocomposites exhibited excellent electrochemical performance with significant reduction of charge transfer resistance. The deliv-ered maximum energy and power density of the nanocomposite were 14.68 Wh kg(-1) and 2,852 W kg(-1), respectively. Furthermore, a remarkable capacitance retention of 97.70 % over 10,000 cycles was achieved by the nanocomposite electrode, indicating its potential to be applied in high-performance and long cycle-life energy storage devices.