▎ 摘 要
Using first-principles calculations, it is shown that the work function of graphene on copper can be adjusted by varying the concentration of intercalated alkali metals. Using density functional theory, we calculate the modulation of work function when Li, Na, or K are intercalated between graphene and a Cu(111) surface. The physical origins of the change in work function are explained in terms of phenomenological models accounting for the formation and depolarization of interfacial dipoles and the shift in the Fermi-level induced via charge transfer. (C) 2015 AIP Publishing LLC.