▎ 摘 要
We present a solution-gated in situ Raman spectroscopy approach, which enables the electrical characterization of graphene on a copper substrate without the need of a transfer process. The application of a voltage across the solution resulted in a shift of the Raman G-band without a significant shift of the 2D band. This observation allowed for the separation of the effects of strain and doping. Based on the G and 2D band shifts we show that we can manipulate the n-type carrier concentration of graphene directly on the copper substrate in a range from about 8 x 10(12) cm(-2) to about 1.5 x 10(13) cm(-2).