▎ 摘 要
Very few materials show large magnetoresistance (MR) under a low magnetic field at room temperature, which causes the barrier to the development of magnetic field sensors for detecting low-level electromagnetic radiation in real- time. Here, a hybrid reduced graphene oxide (rGO)-based magnetic field sensor is produced by in situ deposition of FeCo nanoparticles (NPs) on reduced graphene oxide (rGO). Special quantum magnetoresistance (MR) of the hybrid rGO is observed, which unveils that Abrikosov's quantum model for layered materials can occur in hybrid rGO; meanwhile, the MR value can be tunable by adjusting the particle density of FeCo NPs on rGO nanosheets. Very high MR value up to 21.02 +/- 5.74% at 10 kOe at room temperature is achieved, and the average increasing rate of resistance per kOe is up to 0.9282 omega kOe(-1). In this paper, we demonstrate that the hybrid rGO-based magnetic field sensor can be embedded in a wireless system for real-time detection of low-level electromagnetic radiation caused by a working mobile phone. We believe that the two-dimensional nanomaterials with controllable MR can be integrated with a wireless system for the future connected society.