▎ 摘 要
In this work, we used density functional theory to investigate the structural and electronic properties of rippled pristine graphene and graphene with two orientations of Stone-Wales defects. The formation of periodic ripples was induced by applying uni-axial strain on graphene sheets. The creation of pentagonal and heptagonal rings in the graphitic backbone has resulted in a dramatic modification on electronic properties at the atomic level as a consequence of modifying bond lengths. Moreover, ripples start to show up in graphene with different types of Stone-Wales defects when the strain exceeds 4%. Equally important, the strain may be used to tune the graphene wrinkling as well as graphene electronic properties. Besides, ripples induced by mechanical strain have a great impact on the electronic properties of pristine graphene and graphene with different orientations of Stone-Wales defects. This novel observation might be used to control not only graphene's electronic properties but also graphene structural functionality.