• 文献标题:   Electricity Generation from Capillary-Driven Ionic Solution Flow in a Three-Dimensional Graphene Membrane
  • 文献类型:   Article
  • 作  者:   LI CZ, TIAN ZQ, LIANG LZ, YIN SB, SHEN PK
  • 作者关键词:   3d graphene, capillarydriven flow, streaming potential, energy harvesting, selfpowered system
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244
  • 通讯作者地址:   Guangxi Univ
  • 被引频次:   6
  • DOI:   10.1021/acsami.8b16529
  • 出版年:   2019

▎ 摘  要

Harvesting energy from the ambient environment provides great promise in the applications of micro/nanodevices and self-powered systems. Herein, we report a novel energy-scavenging method where an ionic solution infiltrating into a three-dimensional graphene (3DG) membrane can spontaneously generate electricity under ambient conditions. A constructed 3DG nanogenerator (3DGNG) with an effective size of 0.5 x 2 cm can produce a continuous voltage of similar to 0.28 V and a remarkable output current of similar to 62 mu A. The voltage is higher than those generated from the interaction between water and carbon nanomaterials in previous research typically in the range of microvolts to millivolts. Moreover, we demonstrate the potential application of the 3DGNG by illuminating a liquid crystal display (LCD) directly with 10 3DGNGs in series. These results present a novel avenue for energy harvesting and show bright potential applications in small devices and self-powered systems.