• 文献标题:   Growth of AgI semiconductors on tailored 3D porous Ti3C2 MXene/graphene oxide aerogel to develop sensitive and selective "signal-on" photoelectrochemical sensor for H2S determination
  • 文献类型:   Article
  • 作  者:   ZHANG Q, WANG CQ, TIAN YM, LIU Y, YOU FH, WANG K, WEI J, LONG LL, QIAN J
  • 作者关键词:   mxene, graphene oxide aerogel, agi semiconductor, photoelectrochemical sensor, h2s
  • 出版物名称:   ANALYTICA CHIMICA ACTA
  • ISSN:   0003-2670 EI 1873-4324
  • 通讯作者地址:  
  • 被引频次:   2
  • DOI:   10.1016/j.aca.2023.340845 EA JAN 2023
  • 出版年:   2023

▎ 摘  要

Long term exposure to hydrogen sulfide (H2S) even in low concentration poses a serious threat to human health and the ecosystem, pointing to the significance for its effective supervision. In this study, we report a sensitive and selective "signal-on" photoelectrochemical (PEC) sensor for the determination of toxic H2S in aqueous solution by in situ growth of AgI semiconductors on tailored three-dimensional (3D) porous Ti3C2 MXene/graphene oxide aerogel (MGA). Our research demonstrated that the resultant MGA with the starting feeding mass ratio of MXene and graphene oxide (GO) of 1:8 (MGA1:8) possessed the most excellent PEC performance after the growth of AgI semiconductors than their monomers (Ti3C2 MXene and GO) and the MGAs with other starting feeding mass ratio. Such designed PEC sensor based on MGA1:8/AgI heterojunction showed dramatically strengthened PEC responses with increasing concentrations of S2-. Correspondingly, a wide linear range of 5 nM-200 mu M, a low limit of detection of 1.54 nM (S/N = 3), and exclusively unique selectivity have been achieved. Our research illustrates that the PEC sensor designed with tailored MGA constitutes is an effective pathway to enhance the overall sensing performance, which will envision to boost more efforts for advanced 3D porous aerogel using in PEC sensors.