▎ 摘 要
A reduced graphene oxide (rGO) wrapped Bi2WO6 (Bi2WO6@rGO) hybrid as photoelectrode for enhanced photoelectrocatalytic (PEC) degradation of organic pollutants is reported, which exhibited excellent charge separation and photoconversion efficiency. The core@shell structured Bi2WO6@rGO photoelectrode yielded a pronounced 1.56-fold and 23.8-fold photocurrent density at 1.0V vs. saturated calomel electrode (SCE), than that of loading structured Bi2WO6-rGO and pure Bi2WO6. The Bi2WO6@rGO hybrid exhibited enhanced photoelectrocatalytic efficiency for degradation of Rhodamine B (RhB), which was 43.0% and 65.6% higher than that of photocatalytic (PC) and electrocatalytic (EC) processes, respectively. The enhancement in PEC degradation of RhB benefited from: (1) a strong interaction and a wide range of conjugation were formed in the core@shell system; (2) a 0.26 V of flat band potential was negatively shifted in case of Bi2WO6@rGO composite; (3) the photogenerated electrons and holes could be spatially separated by external electric potentials. (C) 2016 Elsevier B.V. All rights reserved.