• 文献标题:   Layer-by-Layer Assembled Architecture of Polyelectrolyte Multilayers and Graphene Sheets on Hollow Carbon Spheres/Sulfur Composite for High-Performance Lithium-Sulfur Batteries
  • 文献类型:   Article
  • 作  者:   WU F, LI J, SU YF, WANG J, YANG W, LI N, CHEN L, CHEN S, CHEN RJ, BAO LY
  • 作者关键词:   lithiumsulfur batterie, layerbylayer, polyelectrolyte, graphene, coating
  • 出版物名称:   NANO LETTERS
  • ISSN:   1530-6984 EI 1530-6992
  • 通讯作者地址:   Beijing Inst Technol
  • 被引频次:   52
  • DOI:   10.1021/acs.nanolett.6b01981
  • 出版年:   2016

▎ 摘  要

In the present work, polyelectrolyte multilayers (PEMs) and graphene sheets are applied to sequentially coat on the surface of hollow carbon spheres/sulfur composite by a flexible layer-by-layer (LBL) self-assembly strategy. Owing to the strong electrostatic interactions between the opposite charged materials, the coating agents are very stable and the coating procedure is highly efficient. The LBL film shows prominent impact on the stability of the cathode by acting as not only a basic physical barrier, and more importantly, an ion-permselective film to block the polysulfides anions by Coulombic repulsion. Furthermore, the graphene sheets can help to stabilize the polyelectrolytes film and greatly reduce the inner resistance of the electrode by changing the transport of the electrons from a point-to-point mode to a more effective plane-to-point mode. On the basis of the synergistic effect of the PEMs and graphene sheets, the fabricated composite electrode exhibits very stable cycling stability for over 200 cycles at 1 A g-1, along with a high average Coulombic efficiency of 99%. With the advantages of rapid and controllable fabrication of the LBL coating film, the multifunctional architecture developed in this study should inspire the design of other lithium-sulfur cathodes with unique physical and chemical properties.