• 文献标题:   A novel approach to synthesize porous graphene by the transformation and deoxidation of oxygen-containing functional groups
  • 文献类型:   Article
  • 作  者:   ZHANG D, CHEN LM, YAO YC, LIANG F, QU T, MA WH, YANG B, DAI YN, LEI Y
  • 作者关键词:   hydrolysi, deoxidation, ultrasound, oxygencontaining functional group, porous graphene
  • 出版物名称:   CHINESE CHEMICAL LETTERS
  • ISSN:   1001-8417 EI 1878-5964
  • 通讯作者地址:   Kunming Univ Sci Technol
  • 被引频次:   1
  • DOI:   10.1016/j.cclet.2019.05.047
  • 出版年:   2019

▎ 摘  要

In this study, impurity-free porous graphene (PG) with intrinsic pore structure was synthesized through a facile acid-alkali etching-assisted sonication approach. The pore structure appears on the surface of graphene sheets due to intrinsic defects of graphene. The PG possessed an extremely high specific surface area of 2184 m(2)/g, the size of similar to 5 mu m and layer numbers of 3-8. Additionally, PG contained micropores and mesopores simultaneously, with an average pore diameter of approximately 3 nm. The effects of acid, alkali, and ultrasound treatment on PG preparation were elucidated by transmission electron microscopy and fourier transform infrared spectroscopy. First, in an acidic solution, oxygen-containing functional groups (hydroxyls, carboxyl, and epoxides) were formed due to the hydrolysis of sulfate and continuous transformations of these functional groups on graphene oxide. Second, under the synergistic effects of alkali and ultrasound treatment, PG was obtained due to the loss of carboxyl and epoxide groups. A new route for preparing PG was provided by the proposed method. (C) 2019 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.