• 文献标题:   Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices
  • 文献类型:   Article
  • 作  者:   BASU R, SHALOV SA
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW E
  • ISSN:   2470-0045 EI 2470-0053
  • 通讯作者地址:   US Naval Acad
  • 被引频次:   13
  • DOI:   10.1103/PhysRevE.96.012702
  • 出版年:   2017

▎ 摘  要

In a conventional liquid crystal (LC) cell, polyimide layers are used to align the LC homogeneously in the cell, and transmissive indium tin oxide (ITO) electrodes are used to apply the electric field to reorient the LC along the field. It is experimentally presented here that monolayer graphene films on the two glass substrates can function concurrently as the LC aligning layers and the transparent electrodes to fabricate an LC cell, without using the conventional polyimide and ITO substrates. This replacement can effectively decrease the thickness of all the alignment layers and electrodes from about 100 nm to less than 1 nm. The interaction between LC and graphene through p-p electron stacking imposes a planar alignment on the LC in the graphene-based cell-which is verified using a crossed polarized microscope. The graphene-based LC cell exhibits an excellent nematic director reorientation process from planar to homeotropic configuration through the application of an electric field-which is probed by dielectric and electro-optic measurements. Finally, it is shown that the electro-optic switching is significantly faster in the graphene-based LC cell than in a conventional ITO-polyimide LC cell.