• 文献标题:   Amphotericin-B-loaded polymer-functionalized reduced graphene oxides for Leishmania amazonensis chemo-photothermal therapy
  • 文献类型:   Article
  • 作  者:   VITORINO LS, DOS SANTOS TC, BESSA IAA, SANTOS ECS, VERCOZA BRF, DE OLIVEIRA LAS, RODRIGUES JCF, RONCONI CM
  • 作者关键词:   reduced graphene oxide, amphotericin b, leishmania amazonensi, chemophotothermal therapy, nearinfrared lightactivated drug delivery system
  • 出版物名称:   COLLOIDS SURFACES BBIOINTERFACES
  • ISSN:   0927-7765 EI 1873-4367
  • 通讯作者地址:  
  • 被引频次:   5
  • DOI:   10.1016/j.colsurfb.2021.112169 EA NOV 2021
  • 出版年:   2022

▎ 摘  要

Two platforms based on reduced graphene oxide (rGO) functionalized with Pluronic (R) P123 (rGO-P123) and polyethyleneimine - PEI (rGO-PEI) polymers and loaded with amphotericin B (AmB) were fabricated and tested against Leishmania amazonensis, which can cause cutaneous and diffuse cutaneous leishmaniasis. The materials rGO-P123 and rGO-PEI were efficiently loaded with AmB - a polyene antibiotic - which resulted in rGO-P123-AmB (0.078 mg per mg of material) and rGO-PEI-AmB (0.086 mg per mg of material). Under near-infrared (NIR) light irradiation, the amount of AmB released from rGO-PEI-AmB at pH 5.0 and 7.4 doubled in comparison to AmB released in the absence of NIR light under identical conditions. It was accompanied by a photothermal effect. Otherwise, rGO-P123-AmB did not show a significant change in AmB released in the presence and absence of NIR light. Cytotoxicity studies in mammalian host macrophages revealed that rGO-PEI and rGO-PEI-AmB were nontoxic to the host cells, whereas rGO-123 and rGO-P123-AmB were very toxic, particularly the latter. Therefore, only rGO-PEI and rGO-PEI-AmB were tested against L. amazonensis promastigotes in the presence and absence of NIR light. In vitro antiproliferative effects revealed that rGO-PEI-AmB showed a more pronounced activity against the parasite than rGO-PEI, which was improved under NIR light irradiation. Scanning -transmission electron microscopy of L. amazonensis promastigotes after incubation with rGO-PEI or rGO-PEI-AmB suggested autophagic and necrotic cell death. Thus, the facile synthesis, high AmB loading capacity and good photothermal effect make the rGO-PEI-AmB platform a promising candidate for the topical treatment of cutaneous leishmaniasis.