• 文献标题:   The role of the covalent interaction in the formation of the electronic structure of Au- and Cu-intercalated graphene on Ni(111)
  • 文献类型:   Article
  • 作  者:   POPOVA AA, SHIKIN AM, RYBKIN AG, MARCHENKO DE, VILKOV OY, MAKAROVA AA, VARYKHALOV AY, RADER O
  • 作者关键词:  
  • 出版物名称:   PHYSICS OF THE SOLID STATE
  • ISSN:   1063-7834 EI 1090-6460
  • 通讯作者地址:   St Petersburg State Univ
  • 被引频次:   17
  • DOI:   10.1134/S1063783411120195
  • 出版年:   2011

▎ 摘  要

A study is reported of the role played by covalent interaction in the coupling of graphene formed on Ni(111) to the Ni substrate and after intercalation of Au and Cu monolayers underneath the graphene. Covalent interaction of the graphene pi states with d states of the underlying metal (Ni, Au, Cu) has been shown to bring about noticeable distortion of the dispersion relations of the graphene electronic pi states in the region of crossing with d states, which can be described in terms of avoided-crossing effects and formation of bonding and antibonding d-pi states. The overall graphene coupling to a substrate is mediated by the energy and occupation of the hybridized states involved. Because graphene formed directly on the Ni(111) surface has only bonding-type occupied states, the coupling to the substrate is very strong. Interaction with intercalated Au and Cu layers makes occupation of states of the antibonding and bonding types comparable, which translates into a weak resultant overall coupling of graphene to the substrate. As a result, after intercalation of Au atoms, the electronic structure becomes similar to that of quasi-free-standing graphene, with linear dispersion of pi states at the K point of the Brillouin zone and the Dirac point localized close to the Fermi level. Intercalation of Cu atoms under the graphene monolayer results, besides generation of covalent interaction, in a slight charge transport, with a partial occupation of the previously unoccupied pi* states and the Dirac point shifted by 0.35 eV toward increasing binding energy.