• 文献标题:   Tensile strain-induced magnetism transition in multilayer graphene with excess electrons: Stability of the edge-quantum well
  • 文献类型:   Article
  • 作  者:   YANG L, DIAO DF
  • 作者关键词:  
  • 出版物名称:   AIP ADVANCES
  • ISSN:   2158-3226
  • 通讯作者地址:   Shenzhen Univ
  • 被引频次:   0
  • DOI:   10.1063/1.4937434
  • 出版年:   2015

▎ 摘  要

The stability of edge-quantum well-induced strong magnetism of multilayer armchair graphene nanoribbon (AGNR) with excess electrons was investigated under applied tensile strain by density functional theory (DFT) calculations. The results indicated that: (1) The strain along the armchair edge direction led to a transition of the multilayer AGNRs from ferromagnetic state to nonmagnetic state when the strain increased to a critical value; (2) The strain induced bond length changes reduced the stability of the edge-quantum well in terms of the reduction of the electrons capturing capacity; and (3) The spin splitting of the energy bands near the Fermi level reduced with the increase of the strain, resulting in the decrease of the spin moment. This finding suggests that the magnetic properties of graphene have strong dependence on its strain states, which is crucial to the design of graphene-based magnetic devices. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.