▎ 摘 要
We report a mechanically strong, electrically and thermally conductive, and optically transparent shape-memory polyurethane composite which was fabricated by introducing a small amount (0.1 wt%) of high-quality graphene as a filler. Geometrically large (similar to 4.6 mu m2), but highly crystallized few-layer graphenes, verified by Raman spectroscopy and transmission electron microscopy, were prepared by the sonication of expandable graphite in an organic solvent. Oxygen- containing functional groups at the edge plane of graphene were crucial for an effective stress transfer from the graphene to polyurethane. Homogeneously dispersed few-layered graphene enabled polyurethane to have a high shape recovery force of 1.8 MPa cm-3. Graphene, which is intrinsically stretchable up to 10%, will enable high-performance composites to be fabricated at relatively low cost and we thus envisage that such composites may replace carbon nanotubes for various applications in the near future.