▎ 摘 要
In this paper, the structural, electronic and magnetic properties of fully and partially surface modified SiGe nanosheets (NSs) have been investigated using first-principles calculations based on density functional theory. The results demonstrate that the electronic and magnetic properties of SiGe NSs can be tuned by decorating H, Cl and F atoms on Si sites in SiGe NSs. It is shown that by decorating their surface with H, F, and Cl atoms, H-SiGe, F-SiGe, and Cl-SiGe NSs in FM states are predicted to behave as a semiconductor, half-metal, and metal, respectively. The diverse electronic and magnetic properties define the potential applications of SiGe nanosheets in electronics and spintronics.