▎ 摘 要
Polyaniline (PANI) has been widely used for the energy storage applications either as a conducting agent or directly as an electroactive material due to the tunable pseudocapacitive performance owing to its various oxidation states. Nanocomposites including PANI, PANI/graphene oxide (PANI/GO), and PANI/GO/Cr-MOF were synthesized via a novel in situ chemical oxidative polymerization method including two oxidants. The structure and morphology of composites were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM) measurements. Furthermore, PANI, PANI/GO, and PANI/GO/Cr-MOF were assembled as positive electrode materials into a button-type supercapacitor for electrochemical performance testing; the electrochemical performances of the composites were characterized by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) techniques in detail. The ASC (asymmetric supercapacitors) possessed an extended potential window (0.8 V), an extraordinary specific capacitance (243.125 F/g at 0.5 A/g, 243 F/g at 1 A/g, and 242.5 F/g at 2 A/g, and these data fully demonstrate that this material has excellent rate performance), a remarkable cycling property (90.72% capacitance retention after 5000 cycles), and a satisfactory average energy and power density (21.56 wh/kg and 3.6 kW/kg).