▎ 摘 要
We present an experimental investigation on the universality of the optical transmittance of mono-and multilayer chemically exfoliated graphene flakes. By varying the exfoliating solvent, and thereby modulating the strength of electron-electron interactions, we find that the universality is not impacted over the visible region. The impact of modulating the interaction strength is clearly seen as shifts in the M-point exciton spectra. These shifts can then lead to a reduction in the wavelength regime over which universal wavelength independent optical transmittance is observed. At the level of first-order perturbation theory, our results are consistent with existing theoretical predictions for interaction corrections in optical properties of monolayer graphene.